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This article applies the theory of massive electrodynamics to the Dirac equation with
the aim to find the generalized Volkov solution with massive photon field. The resulting
equation is the Riccati equation which cannot be solved in general. We use the approx-
imative Volkov function for massive photons and consider an electron in the periodic
field and in the laser pulse of theδ-function form. We derive the modified Compton
formulas for the interaction of the multiphoton object with an electron for both cases.
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1. INTRODUCTION

The introduction of the massive photon into field theory is elementary from the
mathematical point of view. However, the physical reasons for such generalization
require serious motivation.

We know from the special theory of relativity, that the relativistic mass formula

m= m0√
1− v2

c2

, (1)

wherem0 is the rest mass, has physical meaning forv = c, only if m0 = 0. Since
the velocity of photon in vacuum isv = c, it follows from the viewpoint of the
special theory of relativity that the rest mass of photon is zero.

Nevertheless, massless photon has a momentum

p = E

c
= hω

c
, (2)

as it follows from the Einstein relativistic mass formulaE =
√

c2 p2+m2c4 in
which we put the zero rest mass of photon. Only moving photon has mass as follows
from the Einstein formulaE = mc2. Mass of the moving photon ismγ = hω/c2.
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A nonzero photon mass would have several implications, such as a frequency-
dependent speed of light and the existence of longitudinal electromagnetic waves.
Photon with the nonzero rest mass is evidently in contradiction with special
relativity. Arnold Sommerfeld (1954), who first considered superluminal velocities
and theoretically discovered theČerenkov effect, wrote no remark on the massive
photons in his famous Optics.

If we suppose that the momentum of massive photon isp = hω/c, then
from the Einstein formula follows that the energy of massive photon isE =√

h2ω2+m2c4.
The corresponding Planck formula for the densityP(ω) of the black body

radiation is as follows:

P(ω) =
(
ω2

π2c′3

)
E

eE/kT − 1
; E =

√
h2ω2+m2c4, (3)

where we used the frequencyω instead of the momentum of photon, because the
frequency is used in experiment and not momentum of photon. The massless limit
of the formula (3) is the original Planck law. QuantityE given by Eq. (3) is in
harmony with the quantum definition of massive photon (Pardy, 2002). The quan-
tity c′ is the velocity of photons inside the black body and it must be involved in
the number of electromagnetic modes inside the blackbody. We can put approxi-
matelyc′ ≈ c. To our knowledge there is no experimental evidence that the mod-
ified Planck law is correct. It means that massive photons cannot be involved into
the theory of the black body radiation. To our knowledge the precise measurement
of the anomalous magnetic moment of electron and Lamb shift agree with QED
formulas with zero photon rest mass. On the other hand, if photons are moving in
electromagnetic field, then they have nonzero rest mass (Ritus, 1969). This mass is a
complex quantity, while we will consider here only real quantity. It follows from the
polarization operator in external fields. This operator substantially differs from the
operator in the dielectric medium (Pardy, 1994), where the fundamental role plays
the index of refraction. Polarization of vacuum can be determined also by the source
theory methods (Dittrich, 1978; Schwinger, 1970; Schwingeret al., 1976). The
photon mass following from the vacuum polarization is not generated by the Higgs
mechanism or by the Schwinger mechanism. This mass is of the dynamical origin
corresponding to the radiative corrections. To our knowledge, the experiments with
the black body radiation in magnetic or electric field was never performed.

The formal introduction of the rest mass of photon exist in quantum elec-
trodynamics, where for instance the processes with soft photons are calculated.
In these calculations, the photon mass is introduced in order to avoid the infrared
divergences (Berestetzkiiet al., 1989).

We know that introducing the nonzero photon mass modifies Coulomb law
(Pardy, 2002). Such modification is discussed in literature (Okun, 1981). It is evi-
dent that massive photons play crucial role in gravity. However, this problem was
not discussed in the prestige articles (Okun, 2002).
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On the other hand, the possibility that photon may be massive particle has
been treated by many physicists. The discussion is also devoted to the existence of
the mass of neutrino and its oscillations, which can form some analogue with the
photons with the same importance. The established fact is that the massive electro-
dynamics is a perfectly consistent classical and quantum field theory (Feldmann
and Mathews, 1963; Goldhaber and Nieto, 1971; Minkowski and Seiler, 1971). In
all respect the quantum version has the same status as the standard QED. In this arti-
cle we do not solve the radiative problems in sense of article by van Nieuwenhuizen
(1973). Our goal is to determine the Volkov solution of the Dirac equation with
massive photons. The resulting equation is the Riccati equation which cannot be
solved in general. So, we derive only some approximative formulas.

In particle physics and quantum field theory (Ryder, 1985; de Wit and Smith,
1986; Commins and Bucksbaum, 1983), photon is defined as a massless particle
with spin 1. Its spin is along or in opposite direction to its motion. The massive
photon as a neutral massive particle is usually called vector boson. The equation
for vector boson was derived in the unified theory of the electro-weak interac-
tions. There are other well-known examples of massive spin-1 particles. For in-
stance neutral%-meson,ϕ-meson, andJ/ψ particle, bosonsW± andZ0 in particle
physics.

While massless photon is described by the Maxwell Lagrangian, the massive
photon is described by the Proca Lagrangian from which the field equations follow.
The massive electrodynamics can be considered as a generalization of massless
electrodynamics. The well-known area where the massive photon or boson plays
substantial role is the theory of superconductivity (Ryder, 1985), plasma physics
(Anderson, 1963), waveguides, and so on. Of course the mass of photon is not the
relativistic vacuum rest mass, but effective mass which is generated by the physi-
cal properties of medium, or by some mechanism such as the Higgs mechanism,
Schwinger mechanism, and so on. In this sense, the physics of massive photon
is meaningful, the generalized Volkov solution of the Dirac equation with mas-
sive photon field is physically meaningful too and it is worthwhile to investigate
problems with the massive photons.

In order to be pedagogically clear, we derive in Section 2 the Volkov solution
of the Dirac equation for massless photon field. In Section 3, we find the Riccati
equation which involves mass of photon. Then we discuss the emission of massive
photons by electron in the periodic andδ-form electromagnetic field. We derive
generalized Compton formulas for interaction of the multiphotonic object with
electron.

2. VOLKOV SOLUTION OF THE DIRAC EQUATION
WITH MASSLESS PHOTONS

Let us remember the derivation of the Volkov (1935) solution of the Dirac
equation in vacuum (we use here the method of derivation and metric convention
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of Berestetzkiiet al. (1989)):

(γ (p− eA)−m)9 = 0. (4)

where

Aµ = Aµ(ϕ); ϕ = kx. (5)

We suppose that the four-potential satisfies the Lorentz gauge condition

∂µAµ = kµ(Aµ)′ = (kµAµ)′ = 0, (6)

where the prime denotes derivation with regard toϕ. From the last equation follows

k A= const= 0, (7)

because we can put the constant to zero. The tensor of electromagnetic field is

Fµν = kµA′ν − kνA′µ. (8)

Instead of the first-order Dirac equation (4), we consider the second-order
equation that we get by multiplication of the linear equation by operator
(γ (p− eA)+m) (Berestetzkiiet al., 1989). We get[

(p− eA)2−m2− i

2
eFµνσ

µν

]
ψ = 0. (9)

Using ∂µ(Aµψ) = Aµ∂µψ , which follows from Eq. (6), and∂µ∂µ =
∂2 = −p2, with pµ = i (∂/∂xµ) = i ∂µ, we get the second-order Dirac equation
for the four potential of the plane wave:

[−∂2− 2i (A∂)+ e2A2−m2− ie(γ k)(γ A′)]ψ = 0. (10)

We look for the solution of the last equation in the form

ψ = e−i px F(ϕ). (11)

After insertion of this equation into (10), we get with (k2 = 0)

∂µF = kµF ′, ∂µ∂
µF = k2F ′′ = 0, (12)

the following equation forF(ϕ):

2i (kp)F ′ + [−2e(pA)+ e2A2− ie(γ k)(γ A′)]F = 0. (13)

The integral of the last equation is of the form

F = exp

{
−i
∫ kx

0

[
e(pA)

(kp)
− e2

2(kp)
A2

]
dϕ + e(γ k)(γ A)

2(kp)

}
u√
2p0

, (14)

whereu/
√

2p0 is the arbitrary constant bispinor.
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All powers of (γ k)(γ A) above the first are equal to zero, since

(γ k)(γ A)(γ k)(γ A) = −(γ k)(γ k)(γ A)(γ A)+ 2(k A)(γ k)(γ A) = −k2A2 = 0.
(15)

Then, we can write

exp

{
e

(γ k)(γ A)

2(kp)

}
= 1+ e(γ k)(γ A)

2(kp)
. (16)

So, the solution is of the form

9p = R
u√
2p0

eiS =
[
1+ e

2kp
(γ k)(γ A)

]
u√
2p0

eiS, (17)

whereu is an electron bispinor of the corresponding Dirac equation

(γ p−m)u = 0. (18)

The mathematical objectS is the classical Hamilton–Jacobi function, which
was determined in the form

S= −px−
∫ kx

0

e

kp

[
(pA)− e

2
(A)2

]
dϕ. (19)

The current density is

j µ = 9̄pγ
µ9p, (20)

where9̄ is defined as the transposition of (17), or,

9̄p = ū√
2p0

[
1+ e

2kp
(γ A)(γ k)

]
e−iS. (21)

After insertion of9p and9̄p into the current density, we have

j µ = 1

p0

{
pµ − eAµ + kµ

(
e(pA)

(kp)
− e2A2

2(kp)

)}
, (22)

which is in agreement with formula in the Meyer article (Meyer, 1971).
The so-called kinetic momentum corresponding toj µ is as follows:

Jµ = 9∗p(pµ − eAµ)9p = 9̄pγ
0(pµ − eAµ)9p

=
{

pµ − eAµ + kµ
(

e(pA)

(kp)
− e2A2

2(kp)

)}
+ kµ

ie

8(kp)p0
Fαβ(u∗σαβu), (23)

where

σαβ = 1

2
(γ αγ β − γ βγ α). (24)
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3. VOLKOV SOLUTION OF THE DIRAC EQUATION
FOR MASSIVE PHOTONS

The original Volkov solution is based on the assumption that photon has zero
rest mass, or,k2 = 0. Our goal is to consider the solution of the Dirac equation in
case thatk2 = M2, whereM is the rest mass of photon. We use here the metrical
notation of Berestetzkiiet al. (1989).

We apply the procedure of the preceding section for the case of the massive
photon, and we write

ψ = e−i px F(ϕ), (25)

where forF we get the following equation

M2F ′′ − 2i (kp)F ′ + G(ϕ)F = 0 (26)

with

G(ϕ) = 2e(pA)− e2A2+ ie(γ k)(γ A′) (27)

The Eq. (26) differs from the original Volkov equation (13) only by means
of the massive term. However, the equation is substantially new, because of the
second derivative of the function F. The solution of the last equation can be easily
obtained in the approximative form in case thatM → 0. However, let us try to
find the exact solution, which was not described, to our knowledge, in physical or
mathematical journals.

In order to find such solution, we transcribe this equation in the form:

F ′′ + aF′ + bF= 0, (28)

where

a = −2i (kp)

M2
, b(ϕ) = G(ϕ)

M2
. (29)

Using the substitution

F = v(ϕ)e−
1
2 aϕ , (30)

we get simple equation forv(ϕ):

v′′ + P(ϕ)v = 0, (31)

where

P(ϕ) = −a2

4
+ b. (32)

Using the substitution

v(ϕ) = e
∫ ϕ

0 T(ϕ) dϕ , (33)
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we get from Eq. (31)

T ′ + T2+ P(ϕ) = 0. (34)

Equation (34) is so-called Riccati equation. The mass term is hidden inP(ϕ). It
is well know that there is no general form of solution of this equation. There is only
some solution expressed in the elementary functions for some specific functions
P(ϕ). Nevertheless, there is interesting literature concerning the Riccati equation.
For instance, Riccati equation is applied in the supersymmetric quantum mechanics
(Cooperet al., 1995), in variational calculus (Zelekin, 1998), nonlinear physics
(Matveev and Salle, 1991), in renormalization group theory (Buchbinderet al.,
1992; Miltonet al., 2001) and in thermodynamics (Rosu and de la Crus, 2001).

With regard to circumstances, we are forced to find some approximative
solution with form similar to the original Volkov solution. Let us show the derivaton
of such approximative solution. We hope it will play the same role in quantum
electrodynamics with the massive photon as in the case with the massless photon.

There are many approximative methods for solution of this problem. We
choose the elementary method which was also applied to the Schr¨odinger equation
and which is described for instance in the monograph of Mathews and Walker
(1964).

The approximation consists at the application of the following inequalities:

|F ′′(ϕ)| ¿ |F ′(ϕ)|; |F ′′(ϕ)| ¿ |F(ϕ)|. (35)

Then, we get the original Volkov solution with the difference that the existence
of the nonzero photon mass will be involved only in the exponential expansion.
Or, with U = e(γ k)(γA)/2(kp), we perform the expansion:

eU =
{

1+ 1

1!
U + 1

2!
U2+ 1

3!
U3+ · · ·

}

=
{

1+ e

2(kp)
(γ k)(γA)+ 1

2!

(
e

2(kp)

)2

(−M2A2)

+ 1

3!

(
e

2(kp)

)3

(γ k)(γA)(−M2A2)+ 1

4!

(
e

2(kp)

)4

(M4A4)+ · · ·
}

, (36)

where we have used Eq. (15) in the modified form

(γ k)(γ A)(γ k)(γ A) = −(γ k)(γ k)(γ A)(γ A)+ 2(k A)(γ k)(γ A)

= −k2A2 = −M2A2, (37)

with k2 = M2 for massive photons. We see that in this method of approximation
the Massive solution involves the Volkov solution as the basic term and then the
additional terms containing photon mass.
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After performing some algebraic operations, we get the first approximation
of the Volkov solution with the massive photon in the following form

9p = R(A, M2)
u√
2p0

eiS

=
[

1+ e

2kp
(γ k)(γ A)−

(
e

2kp

)2

M2A2+ · · ·
]

u√
2p0

eiS. (38)

Now, we are prepared to solve some physical problems with the Volkov
solution with massive photons.

4. EMISSION OF MASSIVE PHOTONS BY ELECTRON
MOVING IN THE PERIODIC FIELD

Let us consider the monochromatic circularly polarized electromagnetic wave
with the four potential

A = a1 cosϕ + a2 sinϕ; a3 = 0; ϕ = kx (39)

with kµ = (ω, k) being a wave four-vector andk2 = M2, the four-amplitudesa1

anda2 are the same and one another perpendicular, or

a2
1 = a2

2 = a2; a1a2 = 0. (40)

We shall also use the Lorentz gauge condition, which givesa1k = a2k = 0.
The wave function is then of the form:

ψp =
{

1+ e

2(kp)

[
(γ k)(γa1) cosϕ + (γ k)(γa2) sinϕ − e

2(kp)
a2M2+ · · ·

]}
× u(p)√

2q0
exp

{
−ie

a1 p

(kp)
sinϕ + ie

a2 p

(kp)
cosϕ − iqx

}
, (41)

where

qµ = pµ − e2 a2

2(kp)
(kµ) (42)

is the time-averaged value of Eq. (23).
The corresponding matrix element is of the obligate form (Berestetzkiiet al.,

1989).
After performing the appropriate mathematical operation we get theδ-

function in the matrix element, from which the conservations laws follow in the
form

sk+ q = q′ + k′ (43)

The interpretation of this formula is as follows:s massive photons with mo-
mentumk are absorbed by electron with momentumq and only one massive photon
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is emitted with the four-vectork′, and the final momentum of electron isq′. So, we
see that the Volkov solution gives the multiphoton processes, which are intensively
studied in the modern physics (Delone and Krainov, 2000).

For the periodic wave it is

q2 = q′2 = m2
∗; m∗ = m

√
1+ e4a4

(2kp)2

M2

m2
− e2

m2
a2 (44)

which can be interpreted as a mass shift of electron in the periodic field, or, the
mass renormalization.

If we consider an electron at a rest (q = 0, q0 = m∗), then from the formula
(42), (43), and (44) follows

(s2+ 1)
M2

2m∗

1

ωω′
+ s

1

ω′
− 1

ω
= s

m∗
(1− cos2); s= 1, 2, 3,. . . , n. (45)

The massless limit of the last formula is the well-known Compton formula
(with M = 0)

ω′ = sω

1+ sω
m∗

(1− cosθ )
, (46)

whereθ is an angle betweenk andk′. So we see that frequenciesω′ are harmonic
frequencies ofω.

5. EMISSION OF MASSIVE PHOTONS BY ELECTRON MOVING
IN THE IMPULSIVE FORCE

We use theδ-function form of the ultrashort laser pulse (Pardy, 2003)

Aµ = aµη(ϕ), (47)

whereη(ϕ) is the Heaviside unit step function defined as follows:η(ϕ) = 0,ϕ < 0;
andη(ϕ) = 1,ϕ ≥ 0. Then, the functionSandR in the Volkov solution9p are as
follows (Pardy, 2003):

S= −px−
[
e

ap

kp
− e2

2kp
a2

]
ϕ, R=

[
1+ e

2kp
(γ k)(γa)η(ϕ)+ · · ·

]
. (48)

So, we get the matrix element in the form:

M = g
∫

d4x9̄p′O9p
eik ′x
√

2ω′
, (49)

whereO = γe′∗, g = −ie2 in case of the electromagnetic interaction and

9̄p′ = ū√
2p′0

R̄(p′) e−i S(p′). (50)
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In such a way, using above definitions, we write the matrix element in the
form:

M = g√
2ω′

1√
2p′02p0

∫
d4xR̄(p′)OR(p) e−i S(p′)+i S(p) eik ′x. (51)

The quantityR̄(p′) follows immediately from Eq: (48), namely

R̄′ =
[
1+ e

2kp′
(γ k)(γa)η(ϕ)+ · · ·

]
=
[
1+ e

2kp′
(γa)(γ k)η(ϕ)+ · · ·

]
. (52)

Using

−iS(p′)+ iS(p) = i (p′ − p)+ i (α′ − α)ϕ, (53)

where

α =
(

e
ap

kp
− e2

2

a2

kp

)
, α′ =

(
e

ap′

kp′
− e2

2

a2

kp′

)
, (54)

we get

M = g√
2ω′

1√
2p′02p0

∫
d4xū(p′)R̄(p′)OR(p)u(p) ei (p′−p)x ei (α′−α)ϕ eik ′x. (55)

We get afterx-integration:

M = g√
2ω′

1√
2p′02p0

ū(p′)R(p′)OR(p)u(p)δ(4)(kl + p− k′ − p′). (56)

We see from the presence of theδ-function in Eq. (56) that during the process
of the interaction of electron with the laser pulse the energy–momentum conser-
vation law holds good:

lk + p = k′ + p′; l = α − α′. (57)

The last equation describes the so called multiphoton process, which can be
also described using Feynman diagrams and which are studied in the different form
intensively in the modern physics of multiphoton ionization of atoms (Delone and
Krainov, 2000; Pardy, 2003).

If we introduce the angle2 betweenk andk′, then, with|k| = ω and|k′| =
ω′, we get from the squared equation (57) in the rest system of electron, where
p = (m∗, 0), the following equationk = (ω, k):

(l 2+ 1)
M2

2m∗

1

ωω′
+ l

1

ω′
− 1

ω
= l

m∗
(1− cos2); l = α − α′, (58)

which is modification of the original equation for the Compton process
1

ω′
− 1

ω
= 1

m
(1− cos2). (59)
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We see that the substantial difference between single photon interaction and
δ-pulse interaction is the factorl = α − α′.

We know that the last formula of the original Compton effect can be written
in the form suitable for the experimental verification, namely:

1λ = 4π
h

mc
sin2 2

2
, (60)

which was used by Compton for the verification of the quantum nature of light
(Rohlf, 1994).

Let us remark, the equationlk + p = k′ + p′ is the symbolic expression of
the nonlinear Compton effect and it concerns only the situation wherel photons
are absorbed at a single point, and it does not describe the process where electron
scatters twice, or more, as it traverses the laser focus. The nonlinear Compton
process was experimentally confirmed (Bullaet al., 1996).

6. DISCUSSION

The present article is continuation of the author discussion on laser interaction
with electrons (Pardy, 1998, 2001), where the Compton model of laser acceleration
was proposed and author article (Pardy, 2003), where theδ-form laser pulse was
considered.

Theδ-form laser pulses are the idealization of the experimental situation in
laser physics. It was demonstrated theoretically that at present time, the
zeptosecond and subzeptosecond laser pulses of duration 10−21 to 10−22 s can
be realized by the petawat lasers (Kaplan and Shkolnikov, 2002). The generation
of the ultrashort laser pulses is the keen interest in development of laser physics.

We have derived modified Compton formulas which involve multiphoton
interaction of laser beam with electron. In case of the periodic field, the multiplicity
is formed by the natural numbers and in case of theδ-pulse, by numberl = α − α′.
This effect can be interpreted in such a way that the photonic object withs or
l photons interacts simultaneously with one electron. We do not think that the
photonic object is consequence of the Bose–Einstein condensation of photons in
laser beam. It behaves as photonic elementary object and probably it can be used
in the experiments in particle physics.

The Volkov solution of the Dirac equation for electromagnetic potential with
massive photons concerns not only the superconductive medium but also the
electron–positron plasma, ionosphere medium, photons in waveguides, or massive
photons generated hypothetically during inflation (Prokopec and Woodard, 2003).

In superconductivity, photon is a massive spin 1 particle as a consequence
of a broken symmetry of the Landau-Ginzburg Lagrangian. The Meissner effect
can be used as an experimental demonstration that photon in a superconductor
is a massive particle. Kirzhnitz and Linde (1972) proposed a qualitative analysis
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wherein they indicated that, as in the Landau–Ginzburg theory of superconducti-
vity, the Meissner effect can also be realized in the Weinberg model. It was shown
that the Meissner effect is realizable in renormalizable gauge fields and also in the
Weinberg model (Yildiz, 1977).

The bosonsW± andZ0 are massive and it means that the generalization of
our approach to the situation in the standard model is evidently feasible. The vector
mesonsρ , ϕ, J/ψ are generated during the nuclear collisions and probably, the
Volkov solution for these massive vector particles will play substantial role in the
nuclear physics.
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